Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.672
1.
PLoS One ; 19(5): e0302628, 2024.
Article En | MEDLINE | ID: mdl-38723000

Blood vessels permit the selective passage of molecules and immune cells between tissues and circulation. Uncontrolled inflammatory responses from an infection can increase vascular permeability and edema, which can occasionally lead to fatal organ failure. We identified mexenone as a vascular permeability blocker by testing 2,910 compounds in the Clinically Applied Compound Library using the lipopolysaccharide (LPS)-induced vascular permeability assay. Mexenone suppressed the LPS-induced downregulation of junctional proteins and phosphorylation of VE-cadherin in Bovine Aortic Endothelial Cells (BAECs). The injection of mexenone 1 hr before LPS administration completely blocked LPS-induced lung vascular permeability and acute lung injury in mice after 18hr. Our results suggest that mexenone-induced endothelial cell (EC) barrier stabilization could be effective in treating sepsis patients.


Endothelial Cells , Lipopolysaccharides , Sepsis , Animals , Sepsis/drug therapy , Sepsis/chemically induced , Sepsis/metabolism , Mice , Cattle , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Capillary Permeability/drug effects , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Acute Lung Injury/prevention & control , Male , Cadherins/metabolism , Mice, Inbred C57BL , Antigens, CD/metabolism
2.
Cells ; 13(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38727303

Small interfering RNA (siRNA) holds significant therapeutic potential by silencing target genes through RNA interference. Current clinical applications of siRNA have been primarily limited to liver diseases, while achievements in delivery methods are expanding their applications to various organs, including the lungs. Cholesterol-conjugated siRNA emerges as a promising delivery approach due to its low toxicity and high efficiency. This study focuses on developing a cholesterol-conjugated anti-Il6 siRNA and the evaluation of its potency for the potential treatment of inflammatory diseases using the example of acute lung injury (ALI). The biological activities of different Il6-targeted siRNAs containing chemical modifications were evaluated in J774 cells in vitro. The lead cholesterol-conjugated anti-Il6 siRNA after intranasal instillation demonstrated dose-dependent therapeutic effects in a mouse model of ALI induced by lipopolysaccharide (LPS). The treatment significantly reduced Il6 mRNA levels, inflammatory cell infiltration, and the severity of lung inflammation. IL6 silencing by cholesterol-conjugated siRNA proves to be a promising strategy for treating inflammatory diseases, with potential applications beyond the lungs.


Acute Lung Injury , Cholesterol , Interleukin-6 , RNA, Small Interfering , Animals , RNA, Small Interfering/metabolism , RNA, Small Interfering/genetics , Acute Lung Injury/therapy , Acute Lung Injury/genetics , Acute Lung Injury/pathology , Acute Lung Injury/metabolism , Interleukin-6/metabolism , Interleukin-6/genetics , Cholesterol/metabolism , Mice , Lipopolysaccharides , Male , Disease Models, Animal , Mice, Inbred C57BL , Cell Line , Lung/pathology , Lung/metabolism
3.
Exp Biol Med (Maywood) ; 249: 10104, 2024.
Article En | MEDLINE | ID: mdl-38708425

Seawater-drowning-induced acute lung injury (SD-ALI) is a life-threatening disorder characterized by increased alveolar-capillary permeability, an excessive inflammatory response, and refractory hypoxemia. Perfluorocarbons (PFCs) are biocompatible compounds that are chemically and biologically inert and lack toxicity as oxygen carriers, which could reduce lung injury in vitro and in vivo. The aim of our study was to explore whether the vaporization of PFCs could reduce the severity of SD-ALI in canines and investigate the underlying mechanisms. Eighteen beagle dogs were randomly divided into three groups: the seawater drowning (SW), perfluorocarbon (PFC), and control groups. The dogs in the SW group were intratracheally administered seawater to establish the animal model. The dogs in the PFC group were treated with vaporized PFCs. Probe-based confocal laser endomicroscopy (pCLE) was performed at 3 h. The blood gas, volume air index (VAI), pathological changes, and wet-to-dry (W/D) lung tissue ratios were assessed. The expression of heme oxygenase-1 (HO-1), nuclear respiratory factor-1 (NRF1), and NOD-like receptor family pyrin domain containing-3 (NLRP3) inflammasomes was determined by means of quantitative real-time polymerase chain reaction (qRT-PCR) and immunological histological chemistry. The SW group showed higher lung injury scores and W/D ratios, and lower VAI compared to the control group, and treatment with PFCs could reverse the change of lung injury score, W/D ratio and VAI. PFCs deactivated NLRP3 inflammasomes and reduced the release of caspase-1, interleukin-1ß (IL-1ß), and interleukin-18 (IL-18) by enhancing the expression of HO-1 and NRF1. Our results suggest that the vaporization of PFCs could attenuate SD-ALI by deactivating NLRP3 inflammasomes via the HO-1/NRF1 pathway.


Acute Lung Injury , Fluorocarbons , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Fluorocarbons/pharmacology , Dogs , Acute Lung Injury/metabolism , Acute Lung Injury/drug therapy , Acute Lung Injury/pathology , Inflammasomes/metabolism , Inflammasomes/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Seawater , Male , Drowning/metabolism , Disease Models, Animal , Lung/pathology , Lung/metabolism , Lung/drug effects
5.
Commun Biol ; 7(1): 514, 2024 May 06.
Article En | MEDLINE | ID: mdl-38710749

Acute lung injury (ALI) is characterized by respiratory failure resulting from the disruption of the epithelial and endothelial barriers as well as immune system. In this study, we evaluated the therapeutic potential of airway epithelial cell-derived extracellular vesicles (EVs) in maintaining lung homeostasis. We isolated human bronchial epithelial cell-derived EVs (HBEC-EVs), which endogenously express various immune-related surface markers and investigated their immunomodulatory potential in ALI. In ALI cellular models, HBEC-EVs demonstrated immunosuppressive effects by reducing the secretion of proinflammatory cytokines in both THP-1 macrophages and HBECs. Mechanistically, these effects were partially ascribed to nine of the top 10 miRNAs enriched in HBEC-EVs, governing toll-like receptor-NF-κB signaling pathways. Proteomic analysis revealed the presence of proteins in HBEC-EVs involved in WNT and NF-κB signaling pathways, pivotal in inflammation regulation. ANXA1, a constituent of HBEC-EVs, interacts with formyl peptide receptor (FPR)2, eliciting anti-inflammatory responses by suppressing NF-κB signaling in inflamed epithelium, including type II alveolar epithelial cells. In a mouse model of ALI, intratracheal administration of HBEC-EVs reduced lung injury, inflammatory cell infiltration, and cytokine levels. Collectively, these findings suggest the therapeutic potential of HBEC-EVs, through their miRNAs and ANXA1 cargo, in mitigating lung injury and inflammation in ALI patients.


Acute Lung Injury , Annexin A1 , Epithelial Cells , Extracellular Vesicles , Receptors, Formyl Peptide , Receptors, Lipoxin , Signal Transduction , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Humans , Extracellular Vesicles/metabolism , Extracellular Vesicles/transplantation , Annexin A1/metabolism , Annexin A1/genetics , Animals , Mice , Receptors, Formyl Peptide/metabolism , Receptors, Formyl Peptide/genetics , Epithelial Cells/metabolism , Bronchi/metabolism , Bronchi/cytology , Male , Mice, Inbred C57BL , MicroRNAs/metabolism , MicroRNAs/genetics , NF-kappa B/metabolism , Cytokines/metabolism , THP-1 Cells
6.
Wiad Lek ; 77(3): 497-505, 2024.
Article En | MEDLINE | ID: mdl-38691792

OBJECTIVE: Aim: The aim of this research is to clarify the potential effect of CDDO-EA against experimentally sepsis induced lung injury in mice. PATIENTS AND METHODS: Materials and Methods: Mice have divided into four groups: Sham group CLP group, Vehicle-treatment group, CDDO-EA-treated group: mice in this group received CDDO-EA 2mg/kg intraperitoneally, 1hr before CLP, then the animals were sacrificed 24hr after CLP. After exsAngpuinations, tissue samples of lung were collected, followed by markers measurement including, TNF-α, IL-1ß, VEGF, MPO, caspase11, Angp-1and Angp-2 by ELISA, gene expression of TIE2 and VE-cadherin by qRT-PCR, in addition to histopathological study. RESULTS: Results: A significant elevation (p<0.05) in TNF-α, IL-1ß, MPO, ANGP-2, VEGF, CASPASE 11 in CLP and vehicle groups when compared with sham group. CDDO-EA group showed significantly lower levels p<0.05, level of ANGP-1 was significantly lower p<0.05 in the CLP and vehicle groups as compared with the sham group. Quantitative real-time PCR demonstrated a significant decrement in mRNA expression of TIE2&ve-cadherin genes p<0.05 in sepsis & vehicle. CONCLUSION: Conclusions: CDDO-EA has lung protective effects due to its anti-inflammatory and antiAngpiogenic activity, additionally, CDDO-EA showes a lung protective effect as they affect tissue mRNA expression of TIE2 and cadherin gene. Furthermore, CDDO-EA attenuate the histopathological changes that occur during polymicrobial sepsis thereby lung protection effect.


Acute Lung Injury , Disease Models, Animal , Endotoxemia , Sepsis , Animals , Mice , Acute Lung Injury/etiology , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Endotoxemia/metabolism , Sepsis/complications , Sepsis/metabolism , Male , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Lung/pathology , Lung/metabolism , Interleukin-1beta/metabolism
7.
Nutrients ; 16(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732622

Acute lung injury, a fatal condition characterized by a high mortality rate, necessitates urgent exploration of treatment modalities. Utilizing UHPLS-Q-Exactive Orbitrap/MS, our study scrutinized the active constituents present in Rosa roxburghii-fermented juice (RRFJ) while also assessing its protective efficacy against LPS-induced ALI in mice through lung histopathological analysis, cytokine profiling, and oxidative stress assessment. The protective mechanism of RRFJ against ALI in mice was elucidated utilizing metabolomics, network pharmacology, and molecular docking methodologies. Our experimental findings demonstrate that RRFJ markedly ameliorates pathological injuries in ALI-afflicted mice, mitigates systemic inflammation and oxidative stress, enhances energy metabolism, and restores dysregulated amino acid and arachidonic acid metabolic pathways. This study indicates that RRFJ can serve as a functional food for adjuvant treatment of ALI.


Acute Lung Injury , Fruit and Vegetable Juices , Lipopolysaccharides , Metabolomics , Oxidative Stress , Rosa , Animals , Acute Lung Injury/drug therapy , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Acute Lung Injury/prevention & control , Rosa/chemistry , Metabolomics/methods , Mice , Male , Oxidative Stress/drug effects , Network Pharmacology , Fermentation , Lung/drug effects , Lung/pathology , Lung/metabolism , Disease Models, Animal , Molecular Docking Simulation , Plant Extracts/pharmacology , Cytokines/metabolism , Energy Metabolism/drug effects
8.
Aging (Albany NY) ; 16(7): 6521-6536, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38613798

Acute lung injury (ALI) is a major cause of acute respiratory failure with a high morbidity and mortality rate, and effective therapeutic strategies for ALI remain limited. Inflammatory response is considered crucial for the pathogenesis of ALI. Garlic, a globally used cooking spice, reportedly exhibits excellent anti-inflammatory bioactivity. However, protective effects of garlic against ALI have never been reported. This study aimed to investigate the protective effects of garlic oil (GO) supplementation on lipopolysaccharide (LPS)-induced ALI models. Hematoxylin and eosin staining, pathology scores, lung myeloperoxidase (MPO) activity measurement, lung wet/dry (W/D) ratio detection, and bronchoalveolar lavage fluid (BALF) analysis were performed to investigate ALI histopathology. Real-time polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assay were conducted to evaluate the expression levels of inflammatory factors, nuclear factor-κB (NF-κB), NLRP3, pyroptosis-related proteins, and H2S-producing enzymes. GO attenuated LPS-induced pulmonary pathological changes, lung W/D ratio, MPO activity, and inflammatory cytokines in the lungs and BALF. Additionally, GO suppressed LPS-induced NF-κB activation, NLRP3 inflammasome expression, and inflammatory-related pyroptosis. Mechanistically, GO promoted increased H2S production in lung tissues by enhancing the conversion of GO-rich polysulfide compounds or by increasing the expression of H2S-producing enzymes in vivo. Inhibition of endogenous or exogenous H2S production reversed the protective effects of GO on ALI and eliminated the inhibitory effects of GO on NF-κB, NLRP3, and pyroptotic signaling pathways. Overall, these findings indicate that GO has a critical anti-inflammatory effect and protects against LPS-induced ALI by suppressing the NF-κB/NLRP3 signaling pathway via H2S generation.


Acute Lung Injury , Allyl Compounds , Hydrogen Sulfide , Lipopolysaccharides , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Signal Transduction , Sulfides , Acute Lung Injury/metabolism , Acute Lung Injury/prevention & control , Acute Lung Injury/pathology , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Animals , NF-kappa B/metabolism , Pyroptosis/drug effects , Signal Transduction/drug effects , Allyl Compounds/pharmacology , Allyl Compounds/therapeutic use , Sulfides/pharmacology , Sulfides/therapeutic use , Male , Hydrogen Sulfide/metabolism , Mice , Lung/pathology , Lung/drug effects , Lung/metabolism , Garlic/chemistry , Anti-Inflammatory Agents/pharmacology , Mice, Inbred C57BL , Dietary Supplements
9.
Clinics (Sao Paulo) ; 79: 100354, 2024.
Article En | MEDLINE | ID: mdl-38640751

AIM: The study was to clarify the mechanism of miR-1258 targeting Prep1 (pKnox1) to control Transforming Growth Factor ß1 (TGF-ß1)/SMAD3 pathway in septic Acute Lung Injury (ALI)-induced oxidative stress and inflammation. METHODS: BEAS-2B cells and C57BL/6 mice were used to make in vitro and in vivo septic ALI models, respectively. miR-1258 expression was checked by RT-qPCR. After transfection in the in vitro experimental model, inflammation, oxidative stress, viability, and apoptosis were observed through ELISA, MTT, and flow cytometry. RESULTS: In the in vivo model after miR-1258 overexpression treatment, inflammation, oxidative stress, and lung injury were further investigated. The targeting relationship between miR-1258 and Pknox1 was tested. Low miR-1258 was expressed in septic ALI patients, LPS-treated BEAS-2B cells, and mice. Upregulated miR-1258 prevented inflammation, oxidative stress, and apoptosis but enhanced the viability of LPS-treated BEAS-2B cells. The impact of upregulated miR-1258 on LPS-treated BEAS-2B cells was mitigated by inhibiting Pknox1 expression. MiR-1258 overexpression had the alleviating effects on inflammation, oxidative stress, and lung injury of LPS-injured mice through suppressing Pknox1 expression and TGF-ß1/SMAD3 cascade activation. CONCLUSIONS: The study concludes that miR-1258 suppresses oxidative stress and inflammation in septic ALI through the Pknox1-regulated TGF-ß1/SMAD3 cascade.


Acute Lung Injury , Apoptosis , Mice, Inbred C57BL , MicroRNAs , Oxidative Stress , Sepsis , Smad3 Protein , Transforming Growth Factor beta1 , Animals , Humans , Male , Mice , Acute Lung Injury/genetics , Acute Lung Injury/metabolism , Disease Models, Animal , Inflammation/metabolism , MicroRNAs/metabolism , MicroRNAs/genetics , Sepsis/complications , Sepsis/metabolism , Sepsis/genetics , Signal Transduction , Smad3 Protein/metabolism , Transforming Growth Factor beta1/metabolism , Up-Regulation
10.
Mol Med ; 30(1): 53, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38649840

OBJECTIVE: Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are associated with significant mortality rates. The role of Fcgr2b in the pathogenesis of ALI/ARDS is not fully elucidated. This study aimed to investigate the functions of Fcgr2b in ALI/ARDS and explore its underlying mechanisms. METHODS: Methods: In this study, rat models of ARDS and pulmonary microvascular endothelial cell (PMVEC) injury models were established through the administration of lipopolysaccharide (LPS). The expression levels of Fcgr2b and Elk1 were quantified in both LPS-induced ARDS rats and PMVECs. Subsequent gain- and loss-of-function experiments were conducted, followed by comprehensive assessments of lung tissue for pathomorphological changes, edema, glycogen storage, fibrosis, and infiltration of inflammatory cells. Additionally, bronchoalveolar lavage fluid was analyzed for T-helper 17 (Th17) cell infiltration, inflammatory response, and microvascular permeability to evaluate lung injury severity in ARDS models. Furthermore, the activity, cytotoxicity, apoptosis, and angiogenic potential of PMVECs were assessed to gauge cell injury. The interaction between Elk1 and Fcgr2b was also examined to confirm their regulatory relationship. RESULTS: In the context of LPS-induced ARDS and PMVEC injury, Fcgr2b expression was markedly reduced, whereas Elk1 expression was elevated. Overexpression of Fcgr2b led to a decrease in Th17 cell infiltration and mitigated lung tissue damage in ARDS models, in addition to reducing LPS-induced injury in PMVECs. Elk1 was found to suppress Fcgr2b transcription through the recruitment of histone 3 lysine 9 trimethylation (H3K9me3). Knockdown of Elk1 diminished Th17 cell infiltration and lung tissue damage in ARDS models, and alleviated LPS-induced injury in PMVECs, effects that were reversed upon Fcgr2b upregulation. CONCLUSION: Elk1 negatively regulates Fcgr2b transcription, thereby augmenting the inflammatory response and exacerbating lung injury in LPS-induced ALI/ARDS.


Acute Lung Injury , Disease Models, Animal , Endothelial Cells , Lipopolysaccharides , Receptors, IgG , Respiratory Distress Syndrome , ets-Domain Protein Elk-1 , Animals , Male , Rats , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Acute Lung Injury/genetics , Acute Lung Injury/chemically induced , Acute Lung Injury/etiology , Endothelial Cells/metabolism , ets-Domain Protein Elk-1/metabolism , ets-Domain Protein Elk-1/genetics , Lung/pathology , Lung/metabolism , Rats, Wistar , Receptors, IgG/metabolism , Receptors, IgG/genetics , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/genetics , Th17 Cells/metabolism , Th17 Cells/immunology , Transcription, Genetic
11.
Drug Des Devel Ther ; 18: 1369-1384, 2024.
Article En | MEDLINE | ID: mdl-38681210

Background: Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are clinically severe respiratory disorders without available pharmacological therapies. Dynasore is a cell-permeable molecule that inhibits GTPase activity and exerts protective effects in several disease models. However, whether dynasore can alleviate lipopolysaccharide (LPS)-induced ALI is unknown. This study investigated the effect of dynasore on macrophage activation and explored its potential mechanisms in LPS-induced ALI in vitro and in vivo. Methods: Bone marrow-derived macrophages (BMDMs) were activated classically with LPS or subjected to NLRP3 inflammasome activation with LPS+ATP. A mouse ALI model was established by the intratracheal instillation (i.t.) of LPS. The expression of PYD domains-containing protein 3 (NLRP3), caspase-1, and gasdermin D (GSDMD) protein was detected by Western blots. Inflammatory mediators were analyzed in the cell supernatant, in serum and bronchoalveolar lavage fluid (BALF) by enzyme-linked immunosorbent assays. Morphological changes in lung tissues were evaluated by hematoxylin and eosin staining. F4/80, Caspase-1 and GSDMD distribution in lung tissue was detected by immunofluorescence. Results: Dynasore downregulated nuclear factor (NF)-κB signaling and reduced proinflammatory cytokine production in vitro and inhibited the production and release of interleukin (IL)-1ß, NLRP3 inflammasome activation, and macrophage pyroptosis through the Drp1/ROS/NLRP3 axis. Dynasore significantly reduced lung injury scores and proinflammatory cytokine levels in both BALF and serum in vivo, including IL-1ß and IL-6. Dynasore also downregulated the co-expression of F4/80, caspase-1 and GSDMD in lung tissue. Conclusion: Collectively, these findings demonstrated that dynasore could alleviate LPS-induced ALI by regulating macrophage pyroptosis, which might provide a new therapeutic strategy for ALI/ARDS.


Acute Lung Injury , Inflammasomes , Lipopolysaccharides , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Animals , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Pyroptosis/drug effects , Mice , Inflammasomes/metabolism , Inflammasomes/antagonists & inhibitors , Inflammasomes/drug effects , Male , Dose-Response Relationship, Drug , Disease Models, Animal , Cells, Cultured , Structure-Activity Relationship
12.
Int J Biol Macromol ; 267(Pt 1): 131153, 2024 May.
Article En | MEDLINE | ID: mdl-38574930

The COVID-19 pandemic has drawn attention to acute lung injury and respiratory distress syndrome as major causes of death, underscoring the urgent need for effective treatments. Protease enzymes possess a wide range of beneficial effects, including antioxidant, anti-inflammatory, antifibrotic, and fibrinolytic effects. This study aimed to evaluate the potential therapeutic effects of bacterial protease and chymotrypsin in rats in mitigating acute lung injury induced by lipopolysaccharide. Molecular docking was employed to investigate the inhibitory effect of bacterial protease and chymotrypsin on TLR-4, the receptor for lipopolysaccharide. Bacterial protease restored TLR-4, Nrf2, p38 MAPK, NF-kB, and IKK-ß levels to normal levels, while chymotrypsin normalized TLR-4, IKK-ß, IL-6, and IL-17 levels. The expression of TGF-ß, caspase-3, and VEGF in the bacterial protease- and chymotrypsin-treated groups was markedly reduced. Our results suggest that both therapies ameliorate LPS-induced acute lung injury and modulate the TLR4/Nrf2/NF-k signaling pathway. Each protease exhibited distinct mechanisms, with bacterial protease showing a better response to oxidative stress, edema, and fibrosis, whereas chymotrypsin provided a better response in the acute phase and innate immunity. These findings highlight the potential of each protease as a promising therapeutic option for acute lung injury and respiratory distress syndrome.


Acute Lung Injury , Lipopolysaccharides , NF-E2-Related Factor 2 , NF-kappa B , Respiratory Distress Syndrome , Signal Transduction , Toll-Like Receptor 4 , Animals , Toll-Like Receptor 4/metabolism , NF-E2-Related Factor 2/metabolism , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Signal Transduction/drug effects , Rats , NF-kappa B/metabolism , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/metabolism , Male , Oxidative Stress/drug effects , Chymotrypsin/metabolism , Molecular Docking Simulation , COVID-19 , COVID-19 Drug Treatment , Peptide Hydrolases/metabolism , SARS-CoV-2
13.
Exp Cell Res ; 438(1): 114047, 2024 May 01.
Article En | MEDLINE | ID: mdl-38631546

BACKGROUND: Programmed death ligand-1(PD-L1) has been postulated to play a crucial role in the regulation of barrier functions of the vascular endothelium, yet how this novel molecule mediates dysfunction in endothelial cells (ECs) during acute lung injury (ALI) remains largely unknown. METHODS: PD-L1 siRNA and plasmids were synthesized and applied respectively to down- or up-regulate PD-L1 expression in human lung microvascular endothelial cells (HMVECs). RNA sequencing was used to explore the differentially expressed genes following PD-L1 overexpression. The expression levels of tight junction proteins (ZO-1 and occludin) and the signaling pathways of NLRP-3/caspase-1/pyroptosis were analyzed. A mouse model of indirect ALI was established through hemorrhagic shock (HEM) followed by cecal ligation and puncture (CLP), enabling further investigation into the effects of intravenous delivery of PD-L1 siRNA. RESULTS: A total of 1502 differentially expressed genes were identified, comprising 532 down-regulated and 970 up-regulated genes in ECs exhibiting PD-L1overexpression. Enrichment of PD-L1-correlated genes were observed in the NOD-like receptor signaling pathway and the TNF signaling pathway. Western blot assays confirmed that PD-L1 overexpression elevated the expression of NLRP3, cleaved-caspase-1, ASC and GSDMD, and concurrently diminished the expression of ZO-1 and occludin. This overexpression also enhanced mitochondrial oxidative phosphorylation and mitochondrial reactive oxygen species (mtROS) production. Interestingly, mitigating mitochondrial dysfunction with mitoQ partially countered the adverse effects of PD-L1 on the functionality of ECs. Furthermore, intravenous administration of PD-L1 siRNA effectively inhibited the activation of the NLRP3 inflammasome and pyroptosis in pulmonary ECs, subsequently ameliorating lung injury in HEM/CLP mice. CONCLUSION: PD-L1-mediated activation of the inflammasome contributes significantly to the disruption of tight junction and induction of pyroptosis in ECs, where oxidative stress associated with mitochondrial dysfunction serves as a pivotal mechanism underpinning these effects.


B7-H1 Antigen , Caspase 1 , Endothelium, Vascular , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Signal Transduction , Animals , Humans , Male , Mice , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Acute Lung Injury/genetics , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Caspase 1/metabolism , Caspase 1/genetics , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Mitochondria/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Pyroptosis/genetics , Reactive Oxygen Species/metabolism
14.
Bioconjug Chem ; 35(5): 638-652, 2024 May 15.
Article En | MEDLINE | ID: mdl-38669628

Aberrant canonical NF-κB signaling has been implicated in diseases, such as autoimmune disorders and cancer. Direct disruption of the interaction of NEMO and IKKα/ß has been developed as a novel way to inhibit the overactivation of NF-κB. Peptides are a potential solution for disrupting protein-protein interactions (PPIs); however, they typically suffer from poor stability in vivo and limited tissue penetration permeability, hampering their widespread use as new chemical biology tools and potential therapeutics. In this work, decafluorobiphenyl-cysteine SNAr chemistry, molecular modeling, and biological validation allowed the development of peptide PPI inhibitors. The resulting cyclic peptide specifically inhibited canonical NF-κB signaling in vitro and in vivo, and presented positive metabolic stability, anti-inflammatory effects, and low cytotoxicity. Importantly, our results also revealed that cyclic peptides had huge potential in acute lung injury (ALI) treatment, and confirmed the role of the decafluorobiphenyl-based cyclization strategy in enhancing the biological activity of peptide NEMO-IKKα/ß inhibitors. Moreover, it provided a promising method for the development of peptide-PPI inhibitors.


Acute Lung Injury , I-kappa B Kinase , Lipopolysaccharides , Peptides, Cyclic , I-kappa B Kinase/metabolism , I-kappa B Kinase/antagonists & inhibitors , Acute Lung Injury/drug therapy , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Animals , Mice , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Humans , NF-kappa B/metabolism , Protein Binding , Cyclization
15.
Life Sci ; 346: 122648, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38631668

AIMS: Acute lung injury (ALI) is a life-threatening lung disease characterized by inflammatory cell infiltration and lung epithelial injury. Icariside II (ICS II), one of the main active ingredients of Herba Epimedii, exhibits anti-inflammatory and immunomodulatory effects. However, the effect and mechanism of ICS II in ALI remain unclear. The purpose of the current study was to investigate the pharmacological effect and underlying mechanism of ICS II in ALI. MAIN METHODS: Models of neutrophil-like cells, human peripheral blood neutrophils, and lipopolysaccharide (LPS)-induced ALI mouse model were utilized. RT-qPCR and Western blotting determined the gene and protein expression levels. Protein distribution and quantification were analyzed by immunofluorescence. KEY FINDINGS: ICS II significantly reduced lung histopathological damage, edema, and inflammatory cell infiltration, and it reduced pro-inflammatory cytokines in ALI. There is an excessive activation of neutrophils leading to a significant production of NETs in ALI mice, a process mitigated by the administration of ICS II. In vivo and in vitro studies found that ICS II could decrease NET formation by targeting neutrophil C-X-C chemokine receptor type 4 (CXCR4). Further data showed that ICS II reduces the overproduction of dsDNA, a NETs-related component, thereby suppressing cGAS/STING/NF-κB signalling pathway activation and inflammatory mediators release in lung epithelial cells. SIGNIFICANCE: This study suggested that ICS II may alleviate LPS-induced ALI by modulating the inflammatory response, indicating its potential as a therapeutic agent for ALI treatment.


Acute Lung Injury , Extracellular Traps , Flavonoids , Lipopolysaccharides , Mice, Inbred C57BL , Neutrophils , Acute Lung Injury/drug therapy , Acute Lung Injury/chemically induced , Acute Lung Injury/pathology , Acute Lung Injury/metabolism , Acute Lung Injury/immunology , Animals , Mice , Extracellular Traps/drug effects , Extracellular Traps/metabolism , Humans , Neutrophils/drug effects , Neutrophils/metabolism , Neutrophils/immunology , Flavonoids/pharmacology , Male , Lung/pathology , Lung/drug effects , Lung/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Anti-Inflammatory Agents/pharmacology
16.
J Extracell Vesicles ; 13(4): e12437, 2024 Apr.
Article En | MEDLINE | ID: mdl-38594787

Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is characterised by an uncontrolled inflammatory response, and current treatment strategies have limited efficacy. Although the protective effect of M2-like macrophages (M2φ) and their extracellular vesicles (EVs) has been well-documented in other inflammatory diseases, the role of M2φ-derived EVs (M2φ-EVs) in the pathogenesis of ALI/ARDS remains poorly understood. The present study utilised a mouse model of lipopolysaccharide-induced ALI to first demonstrate a decrease in endogenous M2-like alveolar macrophage-derived EVs. And then, intratracheal instillation of exogenous M2φ-EVs from the mouse alveolar macrophage cell line (MH-S) primarily led to a take up by alveolar macrophages, resulting in reduced lung inflammation and injury. Mechanistically, the M2φ-EVs effectively suppressed the pyroptosis of alveolar macrophages and inhibited the release of excessive cytokines such as IL-6, TNF-α and IL-1ß both in vivo and in vitro, which were closely related to NF-κB/NLRP3 signalling pathway inhibition. Of note, the protective effect of M2φ-EVs was partly mediated by miR-709, as evidenced by the inhibition of miR-709 expression in M2φ-EVs mitigated their protective effect against lipopolysaccharide-induced ALI in mice. In addition, we found that the expression of miR-709 in EVs derived from bronchoalveolar lavage fluid was correlated negatively with disease severity in ARDS patients, indicating its potential as a marker for ARDS severity. Altogether, our study revealed that M2φ-EVs played a protective role in the pathogenesis of ALI/ARDS, partly mediated by miR-709, offering a potential strategy for assessing disease severity and treating ALI/ARDS.


Acute Lung Injury , Extracellular Vesicles , MicroRNAs , Respiratory Distress Syndrome , Humans , Mice , Animals , Lipopolysaccharides , Extracellular Vesicles/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Macrophages/metabolism , Respiratory Distress Syndrome/chemically induced , Respiratory Distress Syndrome/metabolism , MicroRNAs/metabolism
17.
Int J Mol Sci ; 25(8)2024 Apr 12.
Article En | MEDLINE | ID: mdl-38673868

This study aimed to investigate the preventive effects of the total polyphenols from Nymphaea candida (NCTP) on LPS-induced septic acute lung injury (ALI) in mice and its mechanisms. NCTP could significantly ameliorate LPS-induced lung tissue pathological injury in mice as well as lung wet/dry ratio and MPO activities (p < 0.05). NCTP could significantly decrease the blood leukocyte, neutrophil, monocyte, basophil, and eosinophil amounts and LPS contents in ALI mice compared with the model group (p < 0.05), improving lymphocyte amounts (p < 0.05). Moreover, compared with the model group, NCTP could decrease lung tissue TNF-α, IL-6, and IL-1ß levels (p < 0.05) and downregulate the protein expression of TLR4, MyD88, TRAF6, IKKß, IκB-α, p-IκB-α, NF-κB p65, p-NF-κB p65, NLRP3, ASC, and Caspase1 in lung tissues (p < 0.05). Furthermore, NCTP could inhibit ileum histopathological injuries, restoring the ileum tight junctions by increasing the expression of ZO-1 and occludin. Simultaneously, NCTP could reverse the gut microbiota disorder, restore the diversity of gut microbiota, increase the relative abundance of Clostridiales and Lachnospiraceae, and enhance the content of SCFAs (acetic acid, propionic acid, and butyric acid) in feces. These results suggested that NCTP has preventive effects on septic ALI, and its mechanism is related to the regulation of gut microbiota, SCFA metabolism, and the TLR-4/NF-κB and NLRP3 pathways.


Acute Lung Injury , Gastrointestinal Microbiome , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Polyphenols , Sepsis , Signal Transduction , Toll-Like Receptor 4 , Animals , Acute Lung Injury/metabolism , Acute Lung Injury/etiology , Acute Lung Injury/prevention & control , Acute Lung Injury/microbiology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Toll-Like Receptor 4/metabolism , Gastrointestinal Microbiome/drug effects , Mice , NF-kappa B/metabolism , Polyphenols/pharmacology , Sepsis/complications , Sepsis/metabolism , Signal Transduction/drug effects , Male , Lipopolysaccharides
18.
J Ethnopharmacol ; 330: 118230, 2024 Aug 10.
Article En | MEDLINE | ID: mdl-38643862

ETHNOPHARMACOLOGICAL RELEVANCE: Ferulic acid (FA) has shown potential therapeutic applications in treating lung diseases. However, the underlying mechanisms by which FA ameliorates acute lung injury (ALI) have not been distinctly elucidated. AIM OF THE STUDY: The project aims to observe the therapeutic effects of FA on lipopolysaccharide-induced ALI and to elucidate its specific mechanisms in regulating epithelial sodium channel (ENaC), which majors in alveolar fluid clearance during ALI. MATERIALS AND METHODS: In this study, the possible pathways of FA were determined through network pharmacology analyses. The mechanisms of FA in ALI were verified by in vivo mouse model and in vitro studies, including primary alveolar epithelial type 2 cells and three-dimensional alveolar organoid models. RESULTS: FA ameliorated ALI by improving lung pathological changes, reducing pulmonary edema, and upregulating the α/γ-ENaC expression in C57BL/J male mice. Simultaneously, FA was observed to augment ENaC levels in both three-dimensional alveolar organoid and alveolar epithelial type 2 cells models. Network pharmacology techniques and experimental data from inhibition or knockdown of IkappaB kinase ß (IKKß) proved that FA reduced the phosphorylation of IKKß/nuclear factor-kappaB (NF-κB) and eliminated the lipopolysaccharide-inhibited expression of ENaC, which could be regulated by nuclear protein NF-κB p65 directly. CONCLUSIONS: FA could enhance the expression of ENaC at least in part by inhibiting the IKKß/NF-κB signaling pathway, which may potentially pave the way for promising treatment of ALI.


Acute Lung Injury , Coumaric Acids , Epithelial Sodium Channels , Lipopolysaccharides , Mice, Inbred C57BL , Network Pharmacology , Animals , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Coumaric Acids/pharmacology , Male , Epithelial Sodium Channels/metabolism , Lipopolysaccharides/toxicity , Mice , Sodium/metabolism , Disease Models, Animal , Signal Transduction/drug effects , I-kappa B Kinase/metabolism , NF-kappa B/metabolism , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/metabolism
19.
Biochem Biophys Res Commun ; 714: 149973, 2024 Jun 25.
Article En | MEDLINE | ID: mdl-38657444

Acute respiratory distress syndrome (ARDS) is characterized by acute diffuse inflammatory lung injury with a high mortality rate. Mesenchymal stromal cells (MSC) are pluripotent adult cells that can be extracted from a variety of tissues, including the lung. Lung-resident MSC (LR-MSC) located around vascular vessels and act as important regulators of lung homeostasis, regulating the balance between lung injury and repair processes. LR-MSC support the integrity of lung tissue by modulating immune responses and releasing trophic factors. Studies have reported that the STING pathway is involved in the progression of lung injury inflammation, but the specific mechanism is unclear. In this study, we found that STING deficiency could ameliorate lipopolysaccharides (LPS)-induced acute lung injury, STING knockout (STING KO) LR-MSC had an enhanced treatment effect on acute lung injury. STING depletion protected LR-MSC from LPS-induced apoptosis. RNA-sequencing and Western blot results showed that STING KO LR-MSC expressed higher levels of MSC immunoregulatory molecules, such as Igfbp4, Icam1, Hgf and Cox2, than WT LR-MSC. This study highlights that LR-MSC have a therapeutic role in acute lung injury, and we demonstrate that STING deficiency can enhance the immunomodulatory function of LR-MSC in controlling lung inflammation. Thus, STING can be used as an intervention target to enhance the therapeutic effect of MSC.


Acute Lung Injury , Lipopolysaccharides , Lung , Membrane Proteins , Mesenchymal Stem Cells , Mice, Inbred C57BL , Animals , Lipopolysaccharides/toxicity , Mesenchymal Stem Cells/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/deficiency , Lung/pathology , Lung/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/pathology , Acute Lung Injury/therapy , Acute Lung Injury/metabolism , Mice , Mice, Knockout , Apoptosis , Male
20.
In Vivo ; 38(3): 1127-1132, 2024.
Article En | MEDLINE | ID: mdl-38688656

BACKGROUND/AIM: Patients with pneumonia after prolonged neutropenia are at increased risk for acute respiratory distress syndrome (ARDS). The key molecule of endothelial barrier breakdown in sepsis is lipopolysaccharide (LPS), which is a component of the outer membrane of gram-negative bacterial cell walls. Maintaining increased cyclic adenosine monophosphate (cAMP) levels in endothelial cells is effective in preventing endothelial dysfunction and microvascular permeability. The aim of this study was to elucidate whether roflumilast, a phosphodiesterase-4 (PDE-4) inhibitor, is effective in LPS-induced acute lung injury (ALI) during neutropenia recovery in a murine model. MATERIALS AND METHODS: To induce neutropenia, all mice were administered intraperitoneal cyclophosphamide. On day 2 after neutropenia, mice were administered LPS by intra-tracheal instillation. In the prevention group, roflumilast was given orally on day 0, when neutropenia was induced. In the treatment group, roflumilast was administered orally 1 hour after LPS injection. RESULTS: Roflumilast attenuated histopathological changes associated with LPS-induced lung injury. The accumulation of neutrophils and the concentrations of inflammatory cytokines IL-1ß, TNF-α, and IL-6 in bronchoalveolar lavage fluids were inhibited effectively by roflumilast. Also, MMP-9 and TGF-ß expression was attenuated in the roflumilast group. CONCLUSION: Roflumilast significantly attenuated LPS-induced ALI during neutropenia recovery.


Acute Lung Injury , Aminopyridines , Benzamides , Cyclopropanes , Disease Models, Animal , Lipopolysaccharides , Neutropenia , Phosphodiesterase 4 Inhibitors , Animals , Aminopyridines/pharmacology , Cyclopropanes/pharmacology , Cyclopropanes/therapeutic use , Acute Lung Injury/drug therapy , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Lipopolysaccharides/adverse effects , Mice , Benzamides/pharmacology , Benzamides/therapeutic use , Neutropenia/drug therapy , Neutropenia/chemically induced , Phosphodiesterase 4 Inhibitors/pharmacology , Cytokines/metabolism , Male , Bronchoalveolar Lavage Fluid , Neutrophils/drug effects , Neutrophils/metabolism
...